欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(3721)
  • 图书()
  • 专利()
  • 新闻()

Problems in the Determination of Internal Stresses in Plasma Assisted CVD TiN Films

Kewei XU Jiawen HE Huijiu ZHOU Research Institute for Strength of Metals , Xi'an Jiaotong University , Xi'an , 710049 , China

材料科学技术(英)

The measurement of internal stresses in a PACVD TiN film proved experimentally to be difficult by a conventional X-ray diffraction technique.The linear relationship between 2θ and sin~2(?) could hardly be reached in some cases.Nevertheless.a good confirmation between the variation of FWHM-sin~2(?) and 20-sin~2(?) was revealed for every nonlinear forms.It followed that the effect of nondistributed micro-strains might exist in plasma assisted vapor deposited films,which usually have a strong crystal orientation,and the method of effectively separating macro-stress and micro-strain must be applied for the precise determination of internal stresses in PACVD films.

关键词: TiN film , null , null

Relationship between tensile strength and porosity for high porosity metals

Science in China Series E-Technological Sciences

An analysis model has been established according to the structure feature of high porosity metals, and the mathematical relationship between the tensile strength and porosity for this material has been derived from the model. Moreover, the corresponding theoretical formula has been proved good to reflect the variation law of tensile strength with porosity for high porosity metals by the example experiment on nickel foam.

关键词: high porosity metal;tensile strength;porosity;foams

First-principles study of alloying effect of transition metals on He in titanium ditritide

Journal of Nuclear Materials

Due to its inert reactivity with almost elements, He-3 produced from tritium decay has extremely detrimental effects on the tritide. To refrain from this He-3-induced damage, an efficient way is to increase the stability of He-3 in metal tritide by alloying. Using a first-principles discrete variational method in two cluster models, one for a low He-3 concentration and the other for a high He-3 concentration, the authors study the alloying effect of 3d and 4d transition metals on the stability of He-3 in TiT2 system. It is found that the preferring and metastable sites of He-3 are affected by He-3 concentration : He-3 prefers to stay at original tetrahedral interstitial site when He-3 concentration is low but moves to octahedral site when He-3 concentration is high enough. A criterion of alloying effect is proposed, according to which Nb, Y, Zr, Pd, Ru, Tc, Rh, Cr, Mo and Ag are suggested to be the beneficial alloying elements for increasing the stability of He-3 in the alloyed TiT2 with a low He-3 concentration and Y, Nb, Mo, Zr, Cr, Tc, Ru, Rh and Cu for that with a high He-3 concentration. Our results of alloying effect are supported by the positron annihilation spectroscopy (PAS) measurements for He-implanted Ti, TiMoYAl and TiZrYAl films. (c) 2006 Elsevier B.V. All rights reserved.

关键词: electronic population analysis;molecular wave functions;hydrogen;storage alloys;intermetallic hydride;bubble formation;iron clusters;helium;tritides;lcao;overlap

A first-principles study of the theoretical strength and bulk modulus of hcp metals

Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties

A first-principles method based on the local-density approximation using discrete variational clusters has been used to study the electronic structure of the hcp metals, Be, Mg, Sc, Y, Ti, Zr, Co, Zn and Cd. The binding energy of these metals was calculated in relation to the volume of a unit cell. The variation in the binding energy with the unit cell volume was obtained by means of a polynomial fit. The theoretical tensile strength and bulk modulus of these metals were estimated from the electronic structure and binding energy calculations. The predicted bulk moduli for these metals are in good agreement with experimental findings and other available theoretical data. A linear relationship between the calculated and the experimental strengths is observed.

关键词: potentials;density

Dislocation nucleation governed softening and maximum strength in nano-twinned metals

Nature

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.

关键词: molecular-dynamics simulation;nanocrystalline materials;mechanical-properties;nanotwinned copper;deformation;plasticity;nanoscale;ductility;crystals;nickel

MICROSTRUCTURE AND PROPERTIES OF SiC_w/6061Al COMPOSITE The Author is now with Institute of Metal Research,Academia Sinica,China

MA Zongyi YAO Zhongkai Harbin Institute of Technology , Harbin , China

金属学报(英文版)

The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure

关键词: composite , null , null , null

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共373页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词